31 research outputs found

    Shared Arrangements: practical inter-query sharing for streaming dataflows

    Full text link
    Current systems for data-parallel, incremental processing and view maintenance over high-rate streams isolate the execution of independent queries. This creates unwanted redundancy and overhead in the presence of concurrent incrementally maintained queries: each query must independently maintain the same indexed state over the same input streams, and new queries must build this state from scratch before they can begin to emit their first results. This paper introduces shared arrangements: indexed views of maintained state that allow concurrent queries to reuse the same in-memory state without compromising data-parallel performance and scaling. We implement shared arrangements in a modern stream processor and show order-of-magnitude improvements in query response time and resource consumption for interactive queries against high-throughput streams, while also significantly improving performance in other domains including business analytics, graph processing, and program analysis

    DEMO: integrating MPC in big data workflows

    Get PDF
    Secure multi-party computation (MPC) allows multiple parties to perform a joint computation without disclosing their private inputs. Many real-world joint computation use cases, however, involve data analyses on very large data sets, and are implemented by software engineers who lack MPC knowledge. Moreover, the collaborating parties -- e.g., several companies -- often deploy different data analytics stacks internally. These restrictions hamper the real-world usability of MPC. To address these challenges, we combine existing MPC frameworks with data-parallel analytics frameworks by extending the Musketeer big data workflow manager [4]. Musketeer automatically generates code for both the sensitive parts of a workflow, which are executed in MPC, and the remainder of the computation, which runs on scalable, widely-deployed analytics systems. In a prototype use case, we compute the Herfindahl-Hirschman Index (HHI), an index of market concentration used in antitrust regulation, on an aggregate 156GB of taxi trip data over five transportation companies. Our implementation computes the HHI in about 20 minutes using a combination of Hadoop and VIFF [1], while even "mixed mode" MPC with VIFF alone would have taken many hours. Finally, we discuss future research questions that we seek to address using our approach

    Firmament: Fast, Centralized Cluster Scheduling at Scale

    Get PDF
    Centralized datacenter schedulers can make high-quality placement decisions when scheduling tasks in a cluster. Today, however, high-quality placements come at the cost of high latency at scale, which degrades response time for interactive tasks and reduces cluster utilization. This paper describes Firmament, a centralized scheduler that scales to over ten thousand machines at sub- second placement latency even though it continuously reschedules all tasks via a min-cost max-flow (MCMF) optimization. Firmament achieves low latency by using multiple MCMF algorithms, by solving the problem incrementally, and via problem-specific optimizations. Experiments with a Google workload trace from a 12,500-machine cluster show that Firmament improves placement latency by 20 x over Quincy [22], a prior centralized scheduler using the same MCMF optimiza- tion. Moreover, even though Firmament is centralized, it matches the placement latency of distributed schedulers for workloads of short tasks. Finally, Firmament exceeds the placement quality of four widely-used central- ized and distributed schedulers on a real-world cluster, and hence improves batch task response time by 6 x.This work was supported by a Google European Doc- toral Fellowship, by NSF award CNS-1413920, and by the Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory (AFRL), under contract FA8750-11-C-0249

    Cluster Scheduling for Data Centers

    No full text

    Privacy Heroes Need Data Disguises

    No full text
    corecore